

Dr. Sahar Parkhideh
Hematologist & Oncologist
Shahid Beheshti University of Medical Sciences

History

• First described by Bedrna and Polcak (1979) in patients with chronic leukaemia treated with radiotherapy, tumour lysis syn-drome (TLS) is a metabolic syndrome caused by the break-down of malignant cells.

Tumor Lysis Syndrome (TLS): Key Features

•Biochemical hallmarks:

- •↑ Uric acid (Hyperuricemia)
- •↑ Phosphate (Hyperphosphatemia)
- •↑ Potassium (Hyperkalemia)
- ↓ Calcium (Hypocalcemia)

•Potential consequences:

- Acute kidney injury
- Cardiac arrhythmias
- Seizures
- Death

When Does TLS Occur?

- Typically in first few days after chemotherapy
- •Can also occur after:
- •Radiotherapy (Yamazaki et al, ۲۰۰۴)
- •Steroids (Sparano et al, ۱۹۹۰; Coutinho et al, ۱۹۹۷)
- •Immunotherapy (Yang et al, 1999)
- •Spontaneously in high tumor turnover (Jasek & Day, 1994)

Pathophysiology

- •Massive tumor cell breakdown → release of:
- Nucleic acids
- Proteins
- Intracellular metabolites
- Overwhelms homeostatic mechanisms. Leads to:
- •↑ Uric acid, phosphate, potassium
- •↓ Calcium (Locatelli & Rossi, ۲۰۰۵)

Early Effect: Hyperkalemia

- •First metabolic change in TLS
- •May appear within * hours after starting chemotherapy
- Can be immediately life-threatening

```
(Flombaum, ۲۰۰۰; Locatelli & Rossi, ۲۰۰۵)
```


Uric Acid Nephropathy

- •Hyperuricemia → uric acid crystal precipitation in renal tubules
- Worse in acidic environment (distal tubules)
- •Leads to reduced excretion of cellular breakdown products

Phosphate-Calcium Effects

- •↑ Plasma phosphate → calcium phosphate crystal deposition
- •Sites: soft tissues, renal tract
- Worsens renal function

Vicious Cycle

Acute kidney injury → ↓ potassium clearance
 → worsening hyperkalemia

• Acidosis → accelerates uric acid crystallization in tubules

Cascade to clinical TLS

TLS Classification

•Laboratory TLS:

- Electrolyte abnormalities only
- •Clinical TLS:
- Laboratory TLS + clinical symptoms/organ failure
- Laboratory TLS often precedes clinical TLS
- Appropriate therapy can prevent progression

Cairo-Bishop Definition (۲۰۰۴)

•Laboratory TLS:

- •Specific electrolyte changes **before/during/after treatment**
- •Clinical TLS:
- Organ dysfunction due to electrolyte imbalance
- •Debate: ۲۵% change from baseline often not calculated in practice

Cairo-Bishop clinical tumor lysis syndrome definition* and grading

Complication	Grade									
	0	1	2	3	4	5				
Creatinine $\P\Delta$	≤1.5 × ULN	1.5 × ULN	>1.5-3.0 × ULN	>3.0-6.0 × ULN	>6.0 × ULN	Death				
Cardiac arrhythmia [¶]	None	Intervention not indicated	Nonurgent medical intervention indicated	Symptomatic and incompletely controlled medically or controlled with device (eg, defibrillator)	Life-threatening (eg, arrhythmia associated with HF, hypotension, syncope, shock)	Death				
Seizure	None		One brief, generalized seizure; seizure(s) well controlled by antiseizure medications or infrequent focal motor seizures not interfering with ADL	consciousness is altered; poorly controlled seizure disorder; with breakthrough generalized	Seizure of any kind which are prolonged, repetitive or difficult to control (eg, status epilepticus, intractable epilepsy)	Death				

Risk Factors for TLS

- •High tumor burden → > 1 · cm in diameter or WBC> △ · · · ·
- •High-grade tumors with rapid turnover
- Pre-existing renal impairment or renal infiltration by tumor
- Older age
- Pre-existing hyperuricemia or hyperphosphatemia
- •Elevated LDH> ₹ ULN
- Oliguria and/or acidic urine
- Volume depletion
- Extensive bone marrow involvement
- Highly active, cell-cycle-specific agents
- •Concomitant drugs that ↑ uric acid:
- Alcohol, ascorbic acid, aspirin, caffeine
- •Cisplatin, diazoxide, thiazides, adrenaline, ethambutol
- •Levodopa, methyldopa, nicotinic acid, pyrazinamide
- •Phenothiazines, theophylline

Common High-Risk Malignancies

- •B-cell non-Hodgkin lymphoma (esp. **Burkitt leukemia/lymphoma**)
- Acute lymphoblastic leukemia (ALL)
- •Rarely: low TLS-risk malignancies can cause TLS unexpectedly

Malignancy	Pediatric (n = 682)		Adult (n = 387)		Total (n = 1069)	
	Number	Percent	Number	Percent	Number	Percent
Acute lymphoblastic leukemia	433	63	73	19	506	47
Acute myeloid leukemia	74	11	104	27	178	17
Chronic lymphocytic leukemia	0	0	37	10	37	3.5
Chronic myeloid leukemia	6	0.9	36	9	42	4
Non-Hodgkin's lymphoma	122	18	109	28	231	22
Hodgkin's disease	8	1.2	6	1.6	14	1.3
Multiple myeloma	0	0	15	3.9	15	1.4
Other hematologic malignancies	5	0.7	3	0.7	8	0.7
Solid tumors	34	5	4	1	38	3.6

TLS in Solid Tumors

• Reported in breast cancer, SCLC, neuroblastoma, GCT, sarcoma, ovarian cancer, ...

• Agents implicated include docetaxel, pazopanib

TLS associated with Treatment modalities

- Common with cytotoxic chemotherapy combinations
- Also seen with:
- ✓Glucocorticoids alone
- ✓ Monoclonal antibodies (rituximab, Obinutuzumab)
- ✓ Targeted agents: venetoclax, imatinib
- ✓ Radiation therapy alone
- ✓CAR T-cell therapy

Spontaneous TLS

• Occurs prior to therapy, associated with high uric acid and AKI

• Seen in aggressive NHL and acute leukemia

Prophylaxis: Why It Matters

- •Clinical TLS: ~~~% of patients with high-grade tumors
- Serious outcomes:
- \/\text{\text{require dialysis}}
- •Mortality > 12%

Key Prevention Principle

• Identify high-risk patients early

• Implement prophylactic measures before therapy starts

• Complete prevention not always possible:

Small % develop spontaneous TLS before treatment

Cairo et al. (Y+1+) TLS Risk Model

Low risk:

- Active monitoring
- Hydration ± allopurinol

Intermediate risk:

- Active monitoring
- Hydration + allopurinol

High risk:

- Active monitoring
- Hydration + rasburicase

High-Risk TLS Criteria

- Planned for intensive chemotherapy + any of the following:
- Burkitt lymphoma or lymphoblastic lymphoma
- High-grade lymphoma (DLBCL, T-cell NHL) with bulky disease:
 - LDH > Y × ULN
 - Mass > \ cm (adults)
- Any hematologic malignancy with renal impairment or allergy to allopurinol → consider rasburicase

Timing of Prophylaxis

• Most useful during first treatment course

• Also indicated for re-induction or salvage chemotherapy

• Not indicated for consolidation (including BMT) if patient is in/near remission

Hydration in TLS Prophylaxis

- •Target: ~ L/۲ h in adults
- Traditionally combined with allopurinol + alkaline diuresis
- Alkaline diuresis NOT recommended:
- •↑ Uric acid solubility at alkaline pH, but...
- •Xanthine & hypoxanthine ↓ solubility → crystal precipitation

Allopurinol Prophylaxis

- •Adults: ۲۰۰–۴۰۰ mg/m²/day (۱–۳ doses), max ۸۰۰ mg
- •Common practice: ** mg/day
- •Children: $^{r} \cdot \cdot ^{r} \cdot \cdot \cdot \text{mg/m}^2/\text{day (max }^{r} \cdot \cdot \cdot \text{mg)}$
- •Infants < \ \ kg: \(\cdot \), \(\text{mg/kg every } \) h
- Adjust dose in renal failure
- •Duration: up to ^v days post-chemotherapy
- •Switch to **rasburicase** if biochemical/clinical markers worsen

Rasburicase Prophylaxis

- •Indicated in very high-risk patients + hydration & monitoring
- •Contraindicated in G⁹PD deficiency
- •Licensed dose: •, * mg/kg
- •Duration: △– days for prophylaxis
- •Highly effective in both adults & children

Treatment of Established TLS: Principles

- Multidisciplinary approach: hematology, nephrology, ICU
- Patient status can change rapidly → frequent monitoring
- •If high-dependency care not available → transfer to specialized centre Maintain high index of suspicion

Fluid Balance Goals

- •First step: Vigorous hydration + careful monitoring
- •Prevent: uric acid crystallization & calcium phosphate deposition in renal tubules
- •Adults: ~ L/m²/۲ h
- Urine output targets:
- •Infants: > f mL/kg/h
- •Older patients: \ \ \ \ mL/m²/h
- •Balanced/isotonic solutions; NO potassium in fluids

Monitoring Fluid Status

- Measure urine output hourly
- Fluid balance assessment every ? h
- Document all losses (vomiting, diarrhoea)
- Daily weights (infants: twice daily)
- Watch for fluid overload in infants, elderly, cardiac/renal disease patients

Reduced Urine Output: Next Steps

- •Reassess fluid balance + labs
- •Rule out **urinary tract obstruction** by tumour
- •Fluid overload → nephrology consult
- Use diuretics cautiously:
- •Furosemide •, a mg/kg IV possible in emergencies
- •May worsen uric acid deposition, esp. with tubular blockade

Urine Alkalinization

- NOT recommended in TLS
- •Risks:
- •↑ calcium phosphate precipitation
- ↓ xanthine solubility
- •Evidence of benefit is **equivocal**

Hyperuricaemia Management · Altopurinol: Xanthine oxidase inhibitor

- Prevents new uric acid formation
- Does NOT break down existing uric acid deposits
- Role: prophylaxis only not first choice in established TLS
- Rasburicase in Established TLS
- **Mechanism:** Recombinant urate oxidase → converts uric acid to soluble allantoin
- Advantages over allopurinol: Breaks down existing uric acid deposits, rapid effect
- Switch from allopurinol if TLS develops (unless: allergy or GPPD deficiency)
- Dose: •, * mg/kg/day IV over *• min, for *- V days
- Monitor: Electrolytes daily, clinical response
- EMA/FDA: up to ∆ days daily dosing

Hyperphosphataemia Management

- •If hydration + rasburicase fail → control often difficult without dialysis
- •Aluminium hydroxide (△·-۱△· mg/kg/day) described but:
- Slow acting
- Poorly tolerated
- Not routinely recommended
- Dialysis often required for severe cases

Hypocalcaemia Management

- Asymptomatic: Do not treat (risk of calcium phosphate deposition)
- Cardiac monitoring if:
- \. Corrected calcium ≤ V mg/dl
- Y. ≥Y&% drop from baseline
- Symptomatic (arrhythmia, seizure, tetany):
- Orange of the control of the cont
- Y. Aim: Treat symptoms, not normalize numbers

Hyperkalaemia Management

- •Cardiac monitoring if:
- •K⁺ ≥⁹ meq/L
- •≥۲۵% rise from baseline
- •Medical emergency: K⁺ ≥ [∨] meq/L → urgent dialysis likely
- •Temporary measures:
- Calcium gluconate infusion (cardioprotection)
- Nebulized or IV salbutamol
- •IV insulin + glucose
- •Effects temporary → dialysis often required

Dialysis in TLS

•Indications:

- Renal deterioration + fluid overload
- •Severe hyperkalaemia, hyperuricaemia, hyperphosphataemia, hypocalcaemia unresponsive to medical therapy
- Not recommended: Peritoneal dialysis (slow effect, abdominal pathology risk)
- •Options: Haemodialysis, haemofiltration, CRRT
- Daily dialysis may be optimal (continuous metabolite release)
- CRRT for haemodynamically unstable patients
- Continue until renal recovery & urine output adequate

THANK YOU

